1,073 research outputs found

    Research and developments of distributed video coding

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.The recent developed Distributed Video Coding (DVC) is typically suitable for the applications such as wireless/wired video sensor network, mobile camera etc. where the traditional video coding standard is not feasible due to the constrained computation at the encoder. With DVC, the computational burden is moved from encoder to decoder. The compression efficiency is achieved via joint decoding at the decoder. The practical application of DVC is referred to Wyner-Ziv video coding (WZ) where the side information is available at the decoder to perform joint decoding. This join decoding inevitably causes a very complex decoder. In current WZ video coding issues, many of them emphasise how to improve the system coding performance but neglect the huge complexity caused at the decoder. The complexity of the decoder has direct influence to the system output. The beginning period of this research targets to optimise the decoder in pixel domain WZ video coding (PDWZ), while still achieves similar compression performance. More specifically, four issues are raised to optimise the input block size, the side information generation, the side information refinement process and the feedback channel respectively. The transform domain WZ video coding (TDWZ) has distinct superior performance to the normal PDWZ due to the exploitation in spatial direction during the encoding. However, since there is no motion estimation at the encoder in WZ video coding, the temporal correlation is not exploited at all at the encoder in all current WZ video coding issues. In the middle period of this research, the 3D DCT is adopted in the TDWZ to remove redundancy in both spatial and temporal direction thus to provide even higher coding performance. In the next step of this research, the performance of transform domain Distributed Multiview Video Coding (DMVC) is also investigated. Particularly, three types transform domain DMVC frameworks which are transform domain DMVC using TDWZ based 2D DCT, transform domain DMVC using TDWZ based on 3D DCT and transform domain residual DMVC using TDWZ based on 3D DCT are investigated respectively. One of the important applications of WZ coding principle is error-resilience. There have been several attempts to apply WZ error-resilient coding for current video coding standard e.g. H.264/AVC or MEPG 2. The final stage of this research is the design of WZ error-resilient scheme for wavelet based video codec. To balance the trade-off between error resilience ability and bandwidth consumption, the proposed scheme emphasises the protection of the Region of Interest (ROI) area. The efficiency of bandwidth utilisation is achieved by mutual efforts of WZ coding and sacrificing the quality of unimportant area. In summary, this research work contributed to achieves several advances in WZ video coding. First of all, it is targeting to build an efficient PDWZ with optimised decoder. Secondly, it aims to build an advanced TDWZ based on 3D DCT, which then is applied into multiview video coding to realise advanced transform domain DMVC. Finally, it aims to design an efficient error-resilient scheme for wavelet video codec, with which the trade-off between bandwidth consumption and error-resilience can be better balanced

    Quantum dense coding scheme via cavity decay

    Full text link
    We investigate a secure scheme for implementing quantum dense coding via cavity decay and liner optics devices. Our scheme combines two distinct advantages: atomic qubit sevres as stationary bit and photonic qubit as flying bit, thus it is suitable for long distant quantum communication.Comment: 5 pages, 2 figure. A revised version, accept for publication in Journal of Modern Optc

    Generation of cluster states

    Full text link
    We propose two schemes for the generation of the cluster states. One is based on cavity quantum electrodynamics (QED) techniques. The scheme only requires resonant interactions between two atoms and a single-mode cavity. The interaction time is very short, which is important in view of decoherence. Furthermore, we also discuss the cavity decay and atomic spontaneous emission case. The other is based on atomic ensembles. The scheme has inherent fault tolerance function and is robust to realistic noise and imperfections. All the facilities used in our schemes are well within the current technology.Comment: Complete rewite version, adding the main results of quant-ph/0511045. 7 pages and 3 figure

    Generating multi-atom entangled W states via light-matter interface based fusion mechanism

    Get PDF
    W state is a key resource in quantum communication. Fusion technology has been proven to be a good candidate for preparing a large-size W state from two or more small-size W states in linear optical system. It is of great importance to study how to fuse W states via light-matter interface. Here we show that it is possible to prepare large-size W-state networks using a fusion mechanism in cavity QED system. The detuned interaction between three atoms and a vacuum cavity mode constitute the main fusion mechanism, based on which two or three small-size atomic W states can be fused into a larger-size W state. If no excitation is detected from those three atoms, the remaining atoms are still in the product of two or three new W states, which can be re-fused. The complicated Fredkin gate used in the previous fusion schemes is avoided here. W states of size 2 can be fused as well. The feasibility analysis shows that our fusion processes maybe implementable with the current technology. Our results demonstrate how the light-matter interaction based fusion mechanism can be realized, and may become the starting point for the fusion of multipartite entanglement in cavity QED system.Comment: 9 pages, 2 figure

    Turbo-FLASH based arterial spin labeled perfusion MRI at 7 T.

    Get PDF
    Motivations of arterial spin labeling (ASL) at ultrahigh magnetic fields include prolonged blood T1 and greater signal-to-noise ratio (SNR). However, increased B0 and B1 inhomogeneities and increased specific absorption ratio (SAR) challenge practical ASL implementations. In this study, Turbo-FLASH (Fast Low Angle Shot) based pulsed and pseudo-continuous ASL sequences were performed at 7T, by taking advantage of the relatively low SAR and short TE of Turbo-FLASH that minimizes susceptibility artifacts. Consistent with theoretical predictions, the experimental data showed that Turbo-FLASH based ASL yielded approximately 4 times SNR gain at 7T compared to 3T. High quality perfusion images were obtained with an in-plane spatial resolution of 0.85×1.7 mm(2). A further functional MRI study of motor cortex activation precisely located the primary motor cortex to the precentral gyrus, with the same high spatial resolution. Finally, functional connectivity between left and right motor cortices as well as supplemental motor area were demonstrated using resting state perfusion images. Turbo-FLASH based ASL is a promising approach for perfusion imaging at 7T, which could provide novel approaches to high spatiotemporal resolution fMRI and to investigate the functional connectivity of brain networks at ultrahigh field
    corecore